Refined invariants and TQFTs from Homfly skein theory

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refined invariants and TQFT’s from Homfly skein theory

We work in the reduced SU(N,K) modular category as constructed recently by Blanchet. We define spin type and cohomological refinements of the Turaev-Viro invariants of closed oriented 3-manifolds and give a formula relating them to Blanchet’s invariants. Roberts’ definition of the Turaev-Viro state sum is exploited. Furthermore, we construct refined Turaev-Viro and Reshetikhin-Turaev TQFT’s and...

متن کامل

Power sums and Homfly skein theory

The Murphy operators in the Hecke algebra Hn of type A are explicit commuting elements, whose symmetric functions are central in Hn. In [8] I defined geometrically a homomorphism from the Homfly skein C of the annulus to the centre of each algebra Hn, and found an element Pm in C, independent of n, whose image, up to an explicit linear combination with the identity of Hn, is the mth power sum o...

متن کامل

Skein theory for SU(n)-quantum invariants

For any n ≥ 2 we define an isotopy invariant, 〈Γ〉n , for a certain set of n-valent ribbon graphs Γ in R, including all framed oriented links. We show that our bracket coincides with the Kauffman bracket for n = 2 and with the Kuperberg’s bracket for n = 3. Furthermore, we prove that for any n, our bracket of a link L is equal, up to normalization, to the SUn quantum invariant of L. We show a nu...

متن کامل

Relations between Kauffman and Homfly satellite invariants

We extend a mod 2 relation between the Kauffman and Homfly polynomials, first observed by Rudolph in 1987, to the general Kauffman and Homfly satellite invariants.

متن کامل

Integrality of Homfly (1, 1)-tangle invariants

Given an invariant J(K) of a knot K, the corresponding (1, 1)-tangle invariant J ′(K) = J(K)/J(U) is defined as the quotient of J(K) by its value J(U) on the unknot U . We prove here that J ′ is always an integer 2-variable Laurent polynomial when J is the Homfly satellite invariant determined by decorating K with any eigenvector of the meridian map in the Homfly skein of the annulus. Specialis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Knot Theory and Its Ramifications

سال: 1999

ISSN: 0218-2165,1793-6527

DOI: 10.1142/s0218216599000390